Effects of Different Parameters on Delamination Factor of Glass Fiber Reinforced Plastic (GFRP)
نویسندگان
چکیده
The experimental investigations of the delamination factor of glass fiber reinforced plastic at different cutting parameters are reported in this study. This paper has involved the determination of different factors affecting the hole quality and cause of delamination in a glass fiber reinforced plastic. The various process parameters like different twist drill bits of different materails, different point angle at different speed, feed rate have been taken. The thrust forces and torque values were measured using piezoelectric dynamometer. Mathematical model has been developed for different machining conditions using Minitab software with help of Taguchi design to plan the experiments. The Universal microscope has been used which determines delaminated diameter in GFRP specimens. The finite element method has been applied by using Ansys11.0 software which helped to find out delaminated diameter. It was experimentally observed that for the tungsten carbide and M50 drill bits, the thrust force and torque significant increases on increasing the point angle and feed rate.
منابع مشابه
Effects of Glass-Fiber Reinforced Polymer and Waste Polypropylene Plastic Particles on Geotechnical Properties of Clayey Soils for Using Subgrade in the Pavement
The fine-grained soil including the problematic ones can cause many difficulties in project accomplishment. Settlement and swelling are among the problems of the fine-grained soils. The present study compared the effects of the polypropylene waste plastic (PWP) and glass fiber reinforced polymer (GFRP) on geotechnical properties of the clayey soils for the subgrade design. To this end, the PWP ...
متن کاملOptimization on Delamination of Cutting Parameter during Drilling on Gfrp Plastics Based on Taguchi Method
Drilling of glass fibre reinforced plastic (GFRP) composite is different from metallic materials due to its mechanical properties. The drilling of this material may generate delamination of drilled holes on workpiece. The purpose of this paper is to investigate the influence of the cutting parameters, such as cutting speed and feed rate, point angle of drill and material thickness on delaminati...
متن کاملProcess parameters optimization on machining force and delamination factor in milling of GFRP composites using grey relational analysis
In this study, the optimization of process parameters for milling of glass fiber reinforced polymer (GFRP) composites using grey relational analysis has been investigated. Experiments are conducted using helix angle, spindle speed, feed rate, depth of cut and fiber orientation angle as typical process parameters. The grey relational analysis (GRA) is adopted to obtain grey relational grade for ...
متن کاملEffects of Glass Fiber Reinforced Polymer on Geotechnical Properties of Clayey Soil
Soil reinforcement can be considered as the combination of two parts. One part is soil for compressive stress capacity and another part is some material such as geosynthetics such as steel belts and fibers for tensile stress capacity. Soil improvement is one of the useful methods to increase the strength parameters of the soil. The main goal of this study is to evaluate the effects of GFRP on t...
متن کاملAnalysis of Milling Process Parameters and their Influence on Glass Fiber Reinforced Polymer Composites (RESEARCH NOTE)
Milling of fiber reinforced polymer composites is of great importance for integrated composites with other mating parts. Improper selection of cutting process parameters, excessive cutting forces and other machining conditions would result in rejection of components. Therefore, machining conditions are optimized to reduce the machining forces and damages. This work reports practical experiments...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJMMME
دوره 3 شماره
صفحات -
تاریخ انتشار 2013